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Undirected graphs

Notation. G =(V, E)
* V=nodes (or vertices).
* E = edges (or arcs) between pairs of nodes.
* Captures pairwise relationship between objects.
* Graph size parameters: n=1VI,m=1EI.

V={1,2,3,4,5,6,7,8 }

E={1-2,1-3,2-3,2-4,2-5,3-5,3-7,3-8,4-5,5-6,7-8 }




Some graph applications

I N N

communication

circuit
mechanical
financial
transportation
internet
game
social relationship
neural network
protein network

molecule

telephone, computer
gate, register, processor
joint
stock, currency
street intersection, airport
class C network
board position
person, actor
neuron
protein

atom

fiber optic cable
wire
rod, beam, spring
transactions
highway, airway route
connection
legal move
friendship, movie cast
synapse
protein-protein interaction

bond



Graph representation: adjacency matrix

Adjacency matrix. n-by-n matrix with A, =1 if (u, v) IS an edge.
* Two representations of each edge.
* Space proportional to n2.
* Checking if (1, v) is an edge takes O(1) time.
* ldentifying all edges takes O(n2) time.

12345678

101100000
210111000
311001011
401001000
501110100
6
7
8

00001000
00100001
00100010




Graph representation: adjacency lists

Adjacency lists. Node-indexed array of lists.
* Two representations of each edge.
* Space is O(m + n). /
* Checking if (u, v) is an edge takes O(degree(u)) time.
* ldentifying all edges takes O(m + n) time.

degree = number of neighbors of u




Paths and connectivity

Def. A path in an undirected graph G = (V, E) is a sequence of nodes
Vi, V2, ..., vk With the property that each consecutive pair vi_1, v; is joined
by a different edge in E.

Def. A path is simple if all nodes are distinct.

Def. An undirected graph is connected if for every pair of nodes u and v, there is a
path between u and v.




Cycles

Def. Acycle is a path vi, v, ..., vk In Which v, =v, and k = 2.

Def. Acycle is simple if all nodes are distinct (except for v, and v, ).

cycleC=1-2-4-5-3-1



Trees

Def. An undirected graph is a tree if it is connected and does not contain
a cycle.

Theorem. Let G be an undirected graph on n nodes. Any two of the following
statements imply the third:

* G Is connected.

* G does not contain a cycle.

* G hasn-1 edges.



Rooted trees

Given a tree T, choose a root node r and orient each edge away from r.

Importance. Models hierarchical structure.

a tree the same tree, rooted at 1

a child of v
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Connectivity

s-t connectivity problem. Given two nodes s and ¢, is there a path between
sand ¢ ?

s-t shortest path problem. Given two nodes s and ¢, what is the length of
a shortest path between s and 7 ?

Applications.
* Friendster.
* Maze traversal.
* Kevin Bacon number.
* Fewest hops in a communication network.

12



Graph Search Problem

Input. Agraph G = (V, E) and a starting vertex s € V
Goal. Identify the vertices of V reachable from s in G

Example.

(a) An undirected graph (b) A directed version

In (a), {s, u, v, w} are reachable from s
In (b), {s,u, v} are reachable from s

13



Generic Graph Search Strategy

Input. Agraph G = (V, E) and a starting vertex s € V
Postcondition. a vertex is reachable from s if and only if it is marked as explored

GENERICSEARCH (G, $)

mark s as explored, all other vertices as unexplored
WHILE there is an edge (v, w) € E with v explored and w unexplored
choose some such edge (v, w)

explored unexplored
mark w as explored P \ P

\
|
/
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® =

/

\
\

the frontier

14



Generic Graph Search Strategy

Input. Agraph G = (V, E) and a starting vertex s € V
Postcondition. a vertex is reachable from s if and only if it is marked as explored

GENERICSEARCH (G, $)

mark s as explored, all other vertices as unexplored
WHILE there is an edge (v, w) € E with v explored and w unexplored
choose some such edge (v, w)

mark w as explored

Complexity. Likely to be linear time as long as an eligible edge can be quickly
identified in each iteration of the while loop

Correctness. At the conclusion the GenericSearch algorithm, a vertex v € V'is
marked as explored if and only if there is a path from stovin G

15



Correctness of GenericSearch

Proposition. At the conclusion the GenericSearch algorithm, a vertex v € V'is
marked as explored if and only if there is a path from s to v in G
Pf. [ only if direction by induction on [, the number of loop iterations]
« P(l): for every v marked as explored in [th iteration there is a path from s to v
- base case: P(/) clearly holds when [ = 1 (the path is s, V)
« induction step: show P(k + 1) holds when P(/) holds for [ < k

- v is marked as explored due to an edge (V', V)
- § v V', vis a path from § to v since v’ was marked as explored earlier

GENERICSEARCH (G, $)

mark s as explored, all other vertices as unexplored
WHILE there is an edge (v, w) € E with v explored and w unexplored
choose some such edge (v, w)

mark w as explored

16



Correctness of GenericSearch

Proposition. At the conclusion the GenericSearch algorithm, a vertex v € V'is
marked as explored if and only if there is a path from s to v in G

Pf. [ if direction by contradiction |
We claim that there is a path from s to v in G, but GenericSearch concludes

with v marked as unexplored

Let S C V denote the vertices marked as explored

Vertex s belongs to S but v does not

At least one edge e of path s v v has one endpoint « in $ and the other w

outside S, which is impossible!
- GenericSearch would have explored at least one more vertex, rather than

giving up

eligible for exploration!

S = explored vertices .



Breadth-first search

BFS intuition. Explore outward from s in all possible directions, adding nodes one
“layer” at a time.

BFS algorithm.
* Ly={s}.
- L, = all neighbors of L,.
* L, = all nodes that do not belong to L, or L,, and that have an edge to a node Iin
L,
- L, , = all nodes that do not belong to an earlier layer, and that have an edge to a
node in L.

BFS demo.

18



Breadth-first search

Input. Agraph G = (V, E) in adjacency-list representation, and a vertex s € V
Postcondition. a vertex is reachable from s if and only if it is marked as explored

BFS (G, s)

mark s as explored, all other vertices as unexplored
O < a queue data structure, initialized with s
WHILE Q is not empty
remove the vertex from the front of O, call it v
FOR each edge (v, w) in v’s adjacency-list
IF w 1s unexplored

mark w as explored // visiting w now!

add w to the end of Q

19



Correctness of BFS

GENERICSEARCH (G, s)

mark s as explored, all other vertices as unexplored
WHILE there is an edge (v, w) € E with v explored and w unexplored
choose some such edge (v, w)

mark w as explored BFS is a special case of GenericSearch:

it chooses (v, w) for which v was discovered the earliest,

breaking ties among Vv’s eligible edges according to

BES (G, s) their order in v’s adjacency-list

mark s as explored, all other vertices as unexplored
(O < a queue data structure, initialized with s
WHILE Q is not empty
remove the vertex from the front of Q, call it v
FOR each edge (v, w) in v’s adjacency-list
IF w 1s unexplored

mark w as explored

add w to the end of QO

20



Running time of BFS BFS (G, 5)

1 mark s as explored, all other vertices as unexplored
2 0 < a queue data structure, initialized with s
3 WHILE Q is not empty

4 remove the vertex from the front of O, call it v

S FOR each edge (v, w) in v’s adjacency-list
6 IF w 1s unexplored

Line 1: O(n) 7 mark w as explored

Line 2: O(1) S add w to the end of QO

Lines 3-4: O(n)

- no vertex is explored twice

- each dequeue operation takes O(1) time
Lines 5-6: O(m)

- each edge (v, w) is processed at most twice: exploring v and exploring w
Lines 7-8: O(n) (same reason as Lines 3-4)

Running time: O(m + n)

21



Depth-first search

DFS intuition. More aggressive than BFS, always exploring from the most recently
discovered vertex and backtracking only when necessary (like exploring a maze).

DFS demo.

22



Depth-first search

Input. Agraph G = (V, E) in adjacency-list representation, and a vertex s € V
Postcondition. a vertex is reachable from s if and only if it is marked as explored

DES (G, s) (Iterative Version)

mark all vertices as unexplored
S « a stack data structure, initialized with s
WHILE § is not empty
remove (“pop”) the vertex v from the front of S
IF v 1s unexplored
mark v as explored // visiting v now
FOR each edge (v, w) in v’s adjacency-list

add (“push”) w to the front of §

23



Correctness of DFS

GENERICSEARCH (G, s)

mark s as explored, all other vertices as unexplored
WHILE there is an edge (v, w) € E with v explored and w unexplored
choose some such edge (v, w)

mark w as explored DFS is a special case of GenericSearch:

it chooses (v, w) for which v was discovered most recently,

breaking ties among Vv’s eligible edges according to

DFS (G, s) (Iterative Version) their reverse order in v's adjacency-list

mark all vertices as unexplored
S « a stack data structure, initialized with s
WHILE § is not empty
remove (“pop”) the vertex v from the front of $
IF v 1s unexplored
mark v as explored
FOR each edge (v, w) in v’s adjacency-list

add (“push”) w to the front of §

24



Running time of DFS DEFS (G, s) (Iterative Version)

1 mark all vertices as unexplored
2 § « a stack data structure, initialized with s
3 WHILE S is not empty

4 remove (“pop”) the vertex v from the front of §

S IF v is unexplored
Line 1: O(n) 6 mark v as explored
Line 2: O(1) 7 FOR each edge (v, w) in v’s adjacency-list
O (1) 8 add (“push”) w to the front of S
Lines 6: O(n)

Lines 7-8: O(m)

- each edge (v, w) is processed at most twice: exploring v and exploring w
Lines 3-5: O(m)

- push O(m) vertices to S, and each pop/push operation takes O(1) time
Running time: O(m + n)
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Connected component

Connected component. Find all nodes reachable from s.

Connected component containingnode 1 ={1,2,3,4,5,6,7,8 }.

26



Flood fill (tE&57Xk)

Flood fill. Given lime green pixel in an image, change color of entire blob of
neighboring lime pixels to blue.

* Node: pixel.

* Edge: two neighboring lime pixels.

* Blob: connected component of lime pixels.

recolor lime green blob to blue

Tux Paint

8060

Tools) 1agid
= & "
.’.

aint ' Stamp RainbowSparkles
= . ° -
Lines Shapes Mirror * Flip

e O
Abc ik —
Text \Magic Blur ' Blocks
5 / v & -
Undo Redo Negative Fade
PN . B
Eraser ' New Chalk Drip
o -~ ——
Open ave Thick * Thin
;nnt Quit ' Fill '

)

Coord™ [
ﬂ Blue!
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Flood fill (1E&;53%)

Flood fill. Given lime green pixel in an image, change color of entire blob of

neighboring lime pixels to blue.
* Node: pixel.
* Edge: two neighboring lime pixels.
* Blob: connected component of lime pixels.

recolor lime green blob to blue

e OO Tux Paint

A :ooia Magid

- o
int " Stamp Raunbowss{;fkles

XX o

Lines Shapes Mirror Flip

Abc ™ —

Text \Magic Blur " Blocks

Undo Redo Negat ve Fade

Eraser % C:)‘halk Drip

Qﬁ (;3 -

pen Thick * Thin

-

nnl Ounl

- e
Colord ) | \ W
ﬁ Click in the picture to fill that area with color.
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Undirected connected components

UCC (G)
Input. A undirected graph G = (V, E) in adjacency-list representation, with V = {1,2,---, n}
Postcondition. For every u,v € V, cc(u) = cc(v) if and only if u, v are in the same

connected component

mark all vertices as unexplored
numCC <« 0
FOR i < 1 ton// try all vertices
If 7 1s unexplored // avoid redundancy
numCC < numCC + 1 // new component
// call BFS starting at 1
(O < a queue data structure, initialized with i
WHILE Q is not empty
remove the vertex from the front of O, call it v
cc(v) « numCC
FOR each edge (v, w) in v’s adjacency-list
IF w 1s unexplored
mark w as explored

add w to the end of Q
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Bipartite graphs

Def. An undirected graph G = (V, E) is bipartite if the nodes can be colored blue or
white such that every edge has one white and one blue end.

Applications.
* Stable matching: med-school residents = blue, hospitals = white.

* Scheduling: machines = blue, jobs = white.

a bipartite graph

31



Testing bipartiteness

Many graph problems become:
* Easier if the underlying graph is bipartite (matching).
* Tractable if the underlying graph is bipartite (independent set).

Before attempting to design an algorithm, we need to understand structure of
bipartite graphs.

a bipartite graph G another drawing of G

32



An obstruction to bipartiteness

Lemma. If a graph G is bipartite, it cannot contain an odd-length cycle.

Pf. Not possible to 2-color the odd-length cycle, let alone G.

bipartite not bipartite
(2-colorable) (not 2-colorable)
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Bipartite graphs

Lemma. Let G be a connected graph, and let L, ..., L, be the layers produced by
BFS starting at node s. Exactly one of the following holds.
(i) No edge of G joins two nodes of the same layer, and G is bipartite.
(i) An edge of G joins two nodes of the same layer, and G contains an
odd-length cycle (and hence is not bipartite).

/% %
L, L, L, L, L, L
Case (i) Case (ii)
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Bipartite graphs

Lemma. Let G be a connected graph, and let L, ..., L, be the layers produced by
BFS starting at node s. Exactly one of the following holds.
(i) No edge of G joins two nodes of the same layer, and G is bipartite.
(i) An edge of G joins two nodes of the same layer, and G contains an
odd-length cycle (and hence is not bipartite).

Pf. (i)
* Suppose no edge joins two nodes in same layer.
* By BFS property, each edge joins two nodes in adjacent levels.
* Bipartition: white = nodes on odd levels, blue = nodes on even levels.

O

35



Bipartite graphs

Lemma. Let G be a connected graph, and let L, ..., L, be the layers produced by
BFS starting at node s. Exactly one of the following holds.
(i) No edge of G joins two nodes of the same layer, and G is bipartite.
(i) An edge of G joins two nodes of the same layer, and G contains an
odd-length cycle (and hence is not bipartite).

Pf. (ii)
* Suppose (x,y) is an edge with x, y in same level L.

Let z = lca(x, y) = lowest common ancestor.

Let L, be level containing z.

Consider cycle that takes edge from x to y,
then path from y to z, then path from z to x.

Its lengthis 1 + (j—i) + (j—1i), whichisodd. =
— )

(X, Y) path from  path from
ytoz zto x

36



The only obstruction to bipartiteness

Corollary. A graph G is bipartite iff it contains no odd-length cycle.

() o

<€<— b5-cycle C

bipartite not bipartite
(2-colorable) (not 2-colorable)
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Directed graphs

Notation. G =(V, E).
* Edge (u, v) leaves node u and enters node v.

Ex. Web graph: hyperlink points from one web page to another.
* Orientation of edges is crucial.
* Modern web search engines exploit hyperlink structure to rank web pages by
Importance.

39



Some directed graph applications

directed graph “ directed edge

transportation street intersection one-way street

web web page hyperlink
food web species predator-prey relationship
WordNet synset hypernym
scheduling task precedence constraint
financial bank transaction
cell phone person placed call
infectious disease person infection
game board position legal move
citation journal article citation
object graph object pointer
inheritance hierarchy class inherits from
control flow code block jump

40



Graph search

Directed reachability. Given a node s, find all nodes reachable from s.

Directed s~t shortest path problem. Given two nodes s and ¢,
what is the length of a shortest path from s to ¢ ?

Graph search. BFS extends naturally to directed graphs.

Web crawler. Start from web page s. Find all web pages linked from s,
either directly or indirectly.

41



Strong connectivity

Def. Nodes u and v are mutually reachable if there is both a path from u to v and
also a path from v to u.

Def. A graph is strongly connected if every pair of nodes is mutually reachable.

Lemma. Let s be any node. G is strongly connected iff every node is reachable from
s, and s is reachable from every node.

Pf. = Follows from definition.
Pf. < Path from u to v: concatenate u~s path with s~v path.
Path from v to u: concatenate v~s path with s~y path. =

/_\ ok if paths overlap

e
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Strong connectivity: algorithm

Theorem. Can determine if G is strongly connected in O(m + n) time.
Pf.
* Pick any node s.
Run BFS from s in G. reverse orientation of every edge in G
Run BFS from s in G everse,
Return true iff all nodes reached in both BFS executions.

Correctness follows immediately from previous lemma. =

VAVANERNAVAN

strongly connected not strongly connected
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Strong components

Def. A strong component is a maximal subset of mutually reachable nodes.

Theorem. [Tarjan 1972] Can find all strong components in O(m + n) time.

SIAM J. CompuUT.
Vol. 1, No. 2, June 1972

DEPTH-FIRST SEARCH AND LINEAR GRAPH ALGORITHMS*

ROBERT TARJANt

Abstract. The value of depth-first search or “backtracking” as a technique for solving problems is
illustrated by two examples. An improved version of an algorithm for finding the strongly connected
components of a directed graph and an algorithm for finding the biconnected components of an un-
direct graph are presented. The space and time requirements of both algorithms are bounded by
k,V + k,E + k,for some constants k, , k,, and k5, where V'is the number of vertices and E is the number
of edges of the graph being examined.
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Directed acyclic graphs

Def. ADAG is a directed graph that contains no directed cycles.

Def. Atopological order of a directed graph G = (V, E) is an ordering of its nodes as
Vi, V,, ..., v, SO that for every edge (v;, v,) we have i <.

/\/\ 0N

(vo @ E—@ g —0—v

\/\/ —

a DAG a topological ordering
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Precedence constraints

Precedence constraints. Edge (v;, v;) means task v; must occur before v,.

Applications.
» Course prerequisite graph: course v; must be taken before v..
» Compilation: module v; must be compiled before v..
* Pipeline of computing jobs: output of job v; needed to determine input of job v..

47



Directed acyclic graphs

Lemma. If G has a topological order, then G is a DAG.

Pf. [by contradiction]

* Suppose that G has a topological order v,, v,, ..., v, and that G also has a
directed cycle C. Let’s see what happens.

* Let v; be the lowest-indexed node in C, and let v; be the node just
before v; thus (v;,v,) is an edge.

* By our choice of i, we have i <.

* On the other hand, since (v, v) is an edge and v, v,, ..., v, is a topological
order, we must have j < i, a contradiction. =

the directed cycle C

@@@{Q\o/o/\@ o ®

the supposed topological order: v, ..., v,
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Directed acyclic graphs

Lemma. If G has a topological order, then G is a DAG.

Q. Does every DAG have a topological ordering?

Q. If so, how do we compute one?

49



Directed acyclic graphs

Lemma. If Gis a DAG, then G has a node with no entering edges.

Pf. [by contradiction]
* Suppose that G is a DAG and every node has at least one entering edge. Let’s
see what happens.

Pick any node v, and begin following edges backward from v. Since v has at
least one entering edge (u, v) we can walk backward to u.
* Then, since u has at least one entering edge (x, u), we can walk backward to x.

Repeat until we visit a node, say w, twice.

Let C denote the sequence of nodes encountered between successive visits to
w.Cisacycle. =

Qﬁ—@—@—@—@—@
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Directed acyclic graphs

Lemma. If Gis a DAG, then G has a topological ordering.

PT.

[by induction on #] D>

Base case: true if n = 1.

Given DAG on n > 1 nodes, find a node v with no entering edges.
G -{ v }is a DAG, since deleting v cannot create cycles.

By inductive hypothesis, G — { v } has a topological ordering.
Place v first in topological ordering; then append nodes of G- { v }
In topological order. This is valid since v has no entering edges. =

To compute a topological ordering of G: DAG
Find a node v with no incoming edges and order it first
Delete v from G \klff

Recursively compute a topological ordering of G-—{v}

and append this order after v
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Topological sorting algorithm: running time

Theorem. Algorithm finds a topological order in O(m + n) time.

Pf.
* Maintain the following information:
- count(w) = remaining number of incoming edges
- § = set of remaining nodes with no incoming edges
* Initialization: O(m + n) via single scan through graph.
* Update: to delete v
- remove v from §
- decrement count(w) for all edges from v to w;
and add w to S if count(w) hits 0
- thisis O(1) per edge =
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